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Abstract| The MPI 1:1 de�nition includes routines for

nonblocking point-to-point communication that are in-
tended to support the overlap of communication with com-
putation. We describe two experiments that test the abil-

ity of MPI implementations to actually perform this over-
lap. One experiment tests synchronization overlap, and the
other tests data-transfer overlap. We give results for vendor-

supplied MPI implementations on the CRAY T3E, IBM SP,
and SGI Origin2000 at the CEWES MSRC, along with re-

sults for MPICH on the T3E. All the implementations show
full support for synchronization overlap. Conversely, none
of them support data-transfer overlap at the level needed

for signi�cant performance improvement in our experiment.
We suggest that programming for overlap may not be worth-
while for a broad class of parallel applications using many

current MPI implementations.

Keywords|Message passing, MPI, nonblocking communi-
cation, overlap, parallel performance, CRAY T3E, IBM SP,
SGI Origin, MPICH.

I. Introduction

O
VERLAPPING interprocessor communication with
useful computation is a well-known strategy for im-

proving the performance of parallel applications, and the
Message-Passing Interface (MPI) is a popular program-
ming environment for portable parallel applications [1].
The MPI 1:1 de�nition includes routines for nonblocking
point-to-point communication that are intended to support
the overlap of communication with computation [2]. Sep-
arate routines for starting communication and completing
communication allow the passing of messages to proceed
concurrently with computation.

Though such overlap of communication and computa-
tion motivated the design of nonblocking communication
in MPI, the MPI 1:1 standard does not require that an
MPI implementation actually perform communication and
computation concurrently [2]. We describe experiments
that illustrate the degree to which MPI implementations
support overlap and the degree to which programming for
overlap can improve actual performance. We present re-
sults for popular MPI implementations on parallel systems
available at the CEWES MSRC1: the Cray Message Pass-
ing Toolkit (MPT) and MPICH on the CRAY T3E, the
IBM Parallel Environment (PE) on the IBM SP, and MPT
for IRIX on the SGI Origin2000.
The two experiments we describe are intended to repre-
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sent two broad categories of parallel applications: asyn-
chronous and synchronous. Asynchronous applications
are those where di�erent processes perform communica-
tion at signi�cantly di�erent times or rates. Examples
of asynchronous applications include boss-worker, client-
server, metacomputing, and other MPMD2 applications.
Conversely, synchronous applications are those where all
the processes perform communication at approximately the
same time and rate. SPMD3 applications often qualify as
synchronous.

Just as parallel applications can fall into two categories,
MPI implementations can support two di�erent levels of
overlap: synchronization overlap and data-transfer over-
lap. Point-to-point message passing is explicitly two sided;
one side sends a message, and the other side receives it.
If an MPI implementation can send a message without re-
quiring the two sides to synchronize, it supports overlap
of synchronization with computation. This level of overlap
does not necessarily imply that the implementation per-
forms useful computation while data are actually in tran-
sit between processes. If an implementation performs this
physical transfer of data concurrently with computation, it
supports overlap of data transfer with computation.

For each of these two levels of overlap, we describe an
experiment used to evaluate the MPI implementations at
the CEWES MSRC. We analyze the results for each exper-
iment, describe each system and MPI implementation, and
discuss the implications for asynchronous and synchronous
applications. We conclude with a summary of the results
and comments on the e�ectiveness of programming explic-
itly for overlap.

II. Overlap of Computation with

Synchronization

MPI implementations that do not support the overlap
of computation with synchronization must require the two
processes involved in a message to synchronize. Figure 1
presents a schematic of an experiment to test support for
synchronization overlap in MPI implementations. The ex-
periment measures the completion time for a single mes-
sage.

Immediately after a mutual MPI Barrier, the sending
process issues an \immediate" send, MPI Isend. As the
name implies, the immediate send returns immediately, al-
lowing execution to continue. This process \computes" for
4 seconds before issuing an MPI Wait, which blocks exe-
cution until the message is actually sent. The receiving
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Fig. 1. An experiment to test support for synchronization overlap.
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Fig. 2. Results of the synchronization-overlap experiment in the
default execution environment of each system.

process waits for 2 seconds after the MPI Barrier before
issuing an MPI Recv, which blocks execution until the mes-
sage arrives.

The \result" of the experiment is the completion time of
the MPI Recv after the MPI Barrier. For MPI implemen-
tations that support synchronization overlap, the MPI Recv

completes almost immediately, yielding a time of about 2
seconds. For MPI implementations that do not support
this overlap, the two processes must synchronize. The
MPI Recv does not complete until the MPI Wait executes,
yielding a time of about 4 seconds.
Figure 2 displays the results of the experiment for a range

of message sizes. The results represent the default envi-
ronment on each machine; no environment variables have
been modi�ed. For all message sizes in the �gure, the time
for data transfer is at least an order of magnitude smaller
than the multiple-second delay in the experiment. There-
fore, any time for data transfer does not contribute signif-
icantly to the MPI Recv time. The change from a 2-second
to a 4-second delay indicates a change from synchronization
overlap to no overlap.
Each system shows a distinctive range of message sizes

where overlap is supported by default. The di�erences in
the ranges re
ect di�erences in the MPI implementations.
In addition, each system has a unique method for increasing
the range of overlap well beyond the default range shown
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Fig. 3. Synchronization overlap on the CRAY T3E for messages
smaller than available memory.
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Fig. 4. No overlap on the CRAY T3E for messages larger than
available memory.

in �gure 2.

A. Cray MPT and MPICH on the CRAY T3E

The CRAY T3E is a multiprocessor with a single system
image and distributed, globally addressable memory [3].
Both the vendor-supplied MPI and MPICH support syn-
chronization overlap up to very large message sizes. Fig-
ure 3 models how the vendor-supplied MPI implements
synchronization overlap. The CRAY T3E supports one-
sided communication; each processing element can access
the memory of a remote processing element without the
involvement of the remote CPU [3]. Using this one-sided
communication, the MPI Isend writes a message header in
memory local to the receiving process [4]. It also make a
copy of the message in a local bu�er. The MPI Recv then
uses the header information and one-sided communication
to read the contents of the remote bu�er.
For this procedure to work, the sending process must

have enough free memory to allocate the bu�er. Figure 4
models how the vendor-supplied MPI implements message
passing when the message is too large to copy into a bu�er.
As before, the MPI Isend writes a header to the receiv-
ing process. The MPI Recv blocks until the sender calls
MPI Wait, however, eliminating the opportunity for over-
lap.
The range of message sizes allowing overlap is limited

only by available bu�er space, and thus only by available
memory. Increasing available memory increases the range
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Fig. 5. Synchronization overlap on the IBM SP using eager commu-
nication.

accordingly.
It is interesting to ask why the vendor-supplied MPI

bothers to bu�er the outgoing message. A cynical|though
possibly accurate|answer is that the bu�ering makes the
MPI implementation \streams safe". Early models of the
T3E have a limitation on the use of the interprocessor com-
munication hardware with the unique stream-bu�er hard-
ware used to improve memory bandwidth [5]. These early
T3Es can crash if both these hardware subsystems attempt
to access nearby memory locations at the same time. The
vendor-supplied MPI either bu�ers each message or blocks
execution, avoiding all dangerous memory accesses. More
modern T3Es, such as the one at the CEWES MSRC, do
not have this hardware limitation and do not require mes-
sage bu�ering for safety. Communication-bandwidth ex-
periments described in [6] imply that the vendor-supplied
MPI has not been modi�ed for the improved hardware.

B. IBM PE on the IBM SP

The IBM SP is a multicomputer; each node has its
own system image and local memory [7]. By default, the
vendor-supplied MPI implementation on the SP supports
synchronization overlap only for messages up to tens of
kilobytes. The support for overlap ends at the \eager
limit," which is de�ned by the environment [8]. Figure 5
models how the vendor-supplied MPI implements synchro-
nization overlap through \eager" communication. Each
process allocates a bu�er in local memory for messages
from each of the other processes. The MPI Isend writes
the message to the bu�er space assigned to the sending
process in the local memory of the receiving process. The
MPI Recv then copies the message from this bu�er.
Figure 6 models how the vendor-supplied MPI imple-

ments message passing for messages larger than the eager
limit, in the default environment. The MPI Isend con-
tributes little to actual data transfer, and the MPI Recv

simply blocks until the MPI Wait executes. In other words,
the processes must synchronize.
One method of increasing the range of overlap is sim-

ply increasing the eager limit using the MP EAGER LIMIT

environment variable [8]. Increasing the eager limit is not
a scalable solution, however. To receive eager sends, each
process must have separate bu�er space for every other pro-
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Fig. 6. No overlap on the IBM SP for messages larger than the eager
limit.
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Fig. 7. Synchronization overlap on the IBM SP with
MP CSS INTERRUPT set to yes.

cess. Therefore, the total bu�er space grows as the square
of the number of processes. Even if more than enough
bu�er space is available, the IBM Parallel Environment
imposes a hard limit of 64 kB on the eager limit [8].
A more scalable method of increasing the range of

overlap is to allow the SP's communication subsystem
to interrupt execution [9]. If the environment variable
MP CSS INTERRUPT is set to yes, the communication sub-
system will interrupt computation to send or receive mes-
sages. The default setting is no.
Figure 7 models how the vendor-supplied MPI imple-

ments synchronization overlap when interruption is al-
lowed. The MPI Recv causes the communication subsys-
tem to interrupt the sending process, and a communication
thread becomes active and completes the send. Computa-
tion resumes once the message is sent.

C. MPT for IRIX on the SGI Origin2000

The SGI Origin2000 is a multiprocessor with one system
image and physically distributed, logically shared mem-
ory [10]. By default, the vendor-supplied MPI implemen-
tation on the CEWES MSRC Origin supports synchroniza-
tion overlap for messages up to about a megabyte. Other
Origins may have di�erent defaults.
Within a single Origin system, all MPI messages move

through shared bu�ers [4]. Figure 8 models how the
vendor-supplied MPI implements synchronization overlap
when the message �ts within the shared bu�er. The
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Fig. 8. Synchronization overlap on the SGI Origin2000 for messages
�tting within the shared bu�er.
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Fig. 9. Incomplete synchronization overlap on the SGI Origin2000
for messages larger than the shared bu�er.

MPI Isend copies the message to the shared bu�er, and
the MPI Recv copies it back out.

Figure 8 models how the vendor-supplied MPI imple-
ments message passing when the message does not �t
within the shared bu�er. The MPI Recv does not complete
until the MPI Wait transfers the remaining blocks of the
message through the shared bu�er. As a side e�ect, the
two processes must synchronize.

A straightforward method for increasing the range of
overlap is simply increasing the size of the shared bu�ers
using the MPI BUFS PER PROC environment variable, where
the value of the variable indicates the number of mem-
ory pages [4]. Unlike eager-bu�er space on the IBM SP,
the total shared-bu�er space on the Origin varies with the
number of processes, not with the square of that number.
Therefore, this method of increasing the range of overlap
does not su�er from such poor scalability.

D. Summary

Each of the tested implementations support the over-
lap of computation and synchronization over a wide range
of message sizes, either by default or with minor changes
to the environment. Therefore, all the implementations
should support the e�cient execution of asynchronous ap-
plications. The experiment itself is asynchronous to an
extreme. The bene�ts, if any, of synchronization overlap

for synchronous applications are not so obvious.

III. Overlap of Computation with Data Transfer

MPI implementations that support synchronization
overlap may or may not support data-transfer overlap.
Support for synchronization overlap can fall into three cat-
egories according to the type of data transfer: two sided,
one sided, and third party.
An MPI implementation may support synchronization

overlap without any support for data-transfer overlap. This
corresponds to two-sided data transfer, where one process
must interrupt the execution of another process for transfer
to occur.
This interruption can be avoided in implementations

that support one-sided data transfer. In this case, only
one of the two processes sharing a message must be in-
volved in data transfer at a time. The other process is
free to continue computing, resulting in a limited form of
data-transfer overlap.
In contrast, third-party data transfer allows full data-

transfer overlap. The computing processes operate concur-
rently with a third party that handles the communication.
The experiment described in the previous section does

not di�erentiate between these three possible implementa-
tions of synchronization overlap or the corresponding levels
of data-transfer overlap. The experiment does not directly
measure the time for data transfer. Even if it did, this
time would often be orders of magnitude smaller than the
computation time.
To di�erentiate between implementations of synchro-

nization overlap and to test support for data-transfer over-
lap, we employ a larger experiment based on a semicon-
ductor device simulation. This application is described in
detail in [11]. It uses an unstructured two-dimensional grid
that is partitioned among parallel processes, and it relies
on a Krylov subspace iterative solver. The runtime is dom-
inated by the many sparse matrix-vector multiplications
executed by the solver. Each parallel multiplication re-
quires the communication of values at the interfaces of the
distributed grid partitions. With carefully chosen parti-
tions, the computation and communication are both load
balanced, resulting in a synchronous application.
The experiment uses two versions of this application that

di�er only in the implementation of the parallel matrix-
vector multiplication. One version has separate phases of
communication and computation, and the other tries to
overlap communication with computation.
Figure 10 presents a schematic of the version with

separate phases of communication and computation, the
nonoverlap version. Each process �rst computes its share of
the matrix-vector multiplication. It then issues MPI Irecvs
and MPI Isends to share partition-interface values, fol-
lowed immediately by an MPI Waitall that blocks until
communication completes.
Figure 11 presents a schematic of the version of paral-

lel multiplication designed to overlap communication with
computation. The computation is split into two pieces.
Each processor �rst calculates the multiplication results
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Fig. 10. Parallel matrix-vector multiplication with separate phases
of communication and computation.
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Fig. 11. Parallel matrix-vector multiplication programmed explicitly
to overlap communication with computation.

for the points at the interfaces of its partition of the grid.
The bulk of the computation, the interior of the partition,
occurs after the MPI Irecvs and MPI Isends but before the
MPI Waitall. The intent of this design is to allow commu-
nication to occur concurrently with the interior computa-
tion.

A. Expected results

Common wisdom suggests that the overlap version of
parallel sparse matrix-vector multiplication should provide
better performance [2]. The caveat in [2] of \suitable hard-
ware" should not be underestimated, however. The degree
to which any performance improvement is realized depends
on the level of overlap supported by the MPI implementa-
tion and the underlying system. All the implementations
tested here support synchronization overlap, but they di�er
in their speci�c implementation of this overlap.
Consider what might happen with the parallel multipli-

cation experiment for synchronization overlap that uses
two-sided communication. This case corresponds to the
MPI implementation on the IBM SP for messages larger

than the eager limit when MP CSS INTERRUPT is set to yes.
In both versions of the application, no data-transfer over-

lap can occur for any one message. The runtime is at least
the sum of computation time and maximum per-process
data-transfer time. Any advantage of the overlap version
is a higher-order e�ect related to inherent asynchrony of
the application; load imbalance in the communication pat-
tern may cause synchronization overhead that the overlap
version can avoid. For a primarily synchronous applica-
tion such as this, the performance improvement should be
minimal.
A similar result is likely for synchronization overlap that

uses one-sided communication. Though one-sided commu-
nication can provide partial data-transfer overlap, the syn-
chronous nature of the application avoids overlapping data
transfer with actual computation. In both versions of the
application, all the processes communicate at roughly the
same time. Therefore, each one-sided data transfer over-
laps with other one-sided data transfers, not with compu-
tation. Again, any advantage of the overlap version is a
higher-order e�ect, and performance improvement should
be minimal. All the tested MPI implementations corre-
spond to this one-sided case for some range of message
sizes: under the eager limit on the SP, smaller than the
shared bu�ers on the Origin, and smaller than available
memory on the T3E.
For no message sizes, however, do any of the tested im-

plementations correspond to the remaining category of syn-
chronization overlap, where data transfer is handled by a
third party. Yet it is just this category that o�ers the great-
est promise for the overlap version of the application. In the
nonoverlap version, the processes block at the MPI Waitall

while the third party completes the communication. Con-
versely, the overlap version performs useful computation
while the third party transfers data. If the computation
and communication take comparable time, the overlap ver-
sion can take as little as half the time of the nonoverlap
version.

B. Actual results

Table I presents the results for the performance improve-
ment of the overlap version of the test application over the
nonoverlap version. The results are for a speci�c data set of
about 10; 000 grid points run on 16 processors. Other prob-
lem and system sizes found in [11] show similar results. The
performance improvement is calculated as follows, where
Toverlap and Tnonoverlap are the execution times for the over-
lap version and nonoverlap version, respectively:

Improvement =
Toverlap �Tnonoverlap

Tnonoverlap

� 100%:

As predicted, the overlap version shows little improve-
ment over the nonoverlap version on the SP and the Origin.
On the T3E, however, the overlap version runs dramatically
faster, contradicting the prediction. More surprisingly, the
improvement of almost 80% is signi�cantly higher than the
theoretical peak improvement of 50% given by perfect over-
lap!



TABLE I

Performance Improvement of Programming for Overlap

MPI implementation Improvement

IBM PE on IBM SP 0:4%
MPT for IRIX on SGI Origin2000 5:3%
Cray MPT 1:2:0:1 on CRAY T3E 78:6%

TABLE II

Comparison of MPI Implementations on the CRAY T3E

Implementation Tnonoverlap Toverlap Improvement

MPT 1:2:1:1 55:61 14:85 73:3%
MPT 1:2:1:2 15:32 14:59 4:1%
MPICH 12:48 12:54 �0:4%

Times are in seconds.

Table II presents newer results for the T3E that in-
clude di�erent implementations of MPI: MPT 1:2:1:1,
MPT 1:2:1:2, and the MPICH implementation available
fromMississippi State University [12]. Unlike MPT 1:2:1:1,
MPT 1:2:1:2 validates the prediction by almost elimi-
nating the advantage of the overlap version. MPICH
goes a step further by completely eliminating this advan-
tage, in addition to providing better absolute performance.
The dramatic \improvement" shown by MPT 1:2:0:1 and
MPT 1:2:1:1 appears to be a result of a bug that has been
removed from MPT 1:2:1:2.

IV. Conclusions

MPI implementations provide di�erent levels of support
for the overlap of computation with communication. The
implementations tested here all support the overlap of com-
putation with synchronization, a capability particularly
useful for asynchronous parallel applications. In contrast,
these MPI implementations provide only limited support
for the overlap of computation with data transfer.
This limitation has important implications for applica-

tions programmed explicitly for overlap. For synchronous
applications, \programming for overlap" actually implies
a speci�c level of overlap: full data-transfer overlap. This
level is only provided by implementations using third-party
communication, not two-sided or even one-sided communi-
cation.
The parallel systems and MPI implementations tested

here are common targets for large-scale parallel computa-
tions. None of them provide third-party communication,
and none show signi�cant performance improvement for
the overlap experiment modeled in �gures 10 and 11. This
negative result shows that programming explicitly for over-
lap is clearly not a portable performance enhancement for
the synchronous application used in the experiment.
According to the same arguments used to predict this

result, programming for overlap may be of little bene�t for
synchronous applications in general. Many current MPI
implementations|all those tested here|do not support

the required level of overlap. The additional development
e�ort and code complexity required to program for overlap
seem unjusti�ed.
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